Cramér-Rao Lower Bound

Theorem 1.1 Let X_{i} be independent and identically distributed such that $\mathbf{X} \sim f_{\mathbf{X}}(\mathbf{x}, \theta)$ and let $T(\mathbf{X})$ be an estimator for θ. Then (under certain regularity conditions)

$$
\operatorname{Var}(T(\mathbf{X})) \geq \frac{\left[1+b_{T}^{\prime}(\theta)\right]^{2}}{I(\theta)}
$$

where

$$
\begin{aligned}
I(\theta) & =\mathrm{E}\left[\left(\frac{\partial \ln \left(f_{\mathbf{X}}(\mathbf{x}, \theta)\right)}{\partial \theta}\right)^{2}\right] \\
& =-\mathrm{E}\left[\frac{\partial^{2} \ln \left(f_{\mathbf{X}}(\mathbf{x}, \theta)\right)}{\partial \theta^{2}}\right]
\end{aligned}
$$

For any estimator of θ within the family of $\operatorname{bias}, b_{T}(\theta)$, we now have a lower bound for the variance. A couple of special cases exist:

- For unbiased estimators we have $b_{T}(\theta)=0 \Rightarrow b_{T}^{\prime}(\theta)=0 \Rightarrow \operatorname{Var}(T) \geq \frac{1}{I(\theta)}$
- For $T(\mathbf{X})=c$ a constant, $b_{T}(\theta)=c-\theta \Rightarrow b_{T}^{\prime}(\theta)=-1 \Rightarrow \operatorname{Var}(T) \geq 0$

Proof 1.1 (Unidimensional) Let $V=\frac{\partial \ln (f(\mathbf{x}, \theta))}{\partial \theta}$ (assumed to exist by regularity). Then

$$
\begin{align*}
\mathrm{E}(V) & =\int_{\mathfrak{X}} \frac{1}{f(\mathbf{x}, \theta)} \frac{\partial f(\mathbf{x}, \theta)}{\partial \theta} f(\mathbf{x}, \theta) d x \text { chain rule } \tag{1}\\
& =\frac{\partial}{\partial \theta} \int_{\mathfrak{X}} f(\mathbf{x}, \theta) d x \text { assumes interchangeability } \tag{2}\\
& =0 \text { since derivative of constant } \tag{3}
\end{align*}
$$

Thus,

$$
\begin{align*}
\operatorname{Cov}(V, T) & =\mathrm{E}(V T)-\mathrm{E}(V) \mathrm{E}(T) \tag{4}\\
& =\mathrm{E}(V T)-0 \text { since } \mathrm{E}(V)=0 \tag{5}\\
& =\mathrm{E}\left[T \frac{\partial(\ln (f))}{\partial \theta}\right] \tag{6}\\
& =\int_{\mathfrak{X}} t(\mathbf{x}) \frac{1}{f(\mathbf{x}, \theta)} \frac{\partial f(\mathbf{x}, \theta)}{\partial \theta} f(\mathbf{x}, \theta) d x \tag{7}\\
& =\frac{\partial}{\partial \theta} \int_{\mathfrak{X}} t(\mathbf{x}) f(\mathbf{x}, \theta) d x \text { by assumed interchangeability } \tag{8}\\
& =\frac{\partial}{\partial \theta} \mathrm{E}(T) \tag{9}\\
& =\frac{\partial}{\partial \theta}\left[\theta+b_{T}(\theta)\right] \text { since } b_{T}(\theta)=\mathrm{E}(T)-\theta \tag{10}\\
& =1+b_{T}^{\prime}(\theta) \tag{11}
\end{align*}
$$

We also have that

$$
\begin{align*}
\operatorname{Var}(V) & =\mathrm{E}\left[(V-\mathrm{E}(V))^{2}\right] \tag{12}\\
& =\mathrm{E}\left(V^{2}\right) \tag{13}\\
& =\mathrm{E}\left[\left(\frac{\partial \ln (f)}{\partial \theta}\right)^{2}\right] \tag{14}
\end{align*}
$$

Now, by the above

$$
\begin{align*}
\rho^{2} & =\frac{(\operatorname{Cov}(V, T))^{2}}{\operatorname{Var}(V) \operatorname{Var}(T)} \tag{15}\\
& \leq 1 \tag{16}
\end{align*}
$$

This implies that

$$
\begin{equation*}
\operatorname{Var}(T) \geq \frac{\left[1+b_{T}^{\prime}(\theta)\right]^{2}}{\mathrm{E}\left[\left(\frac{\partial \ln (f)}{\partial \theta}\right)^{2}\right]} \tag{17}
\end{equation*}
$$

Lemma 1.1 $I(\theta)=\mathrm{E}\left(V^{2}\right)=-\mathrm{E}\left(\frac{\partial V}{\partial \theta}\right)=-\mathrm{E}\left(\frac{\partial^{2} \ln (f)}{\partial \theta^{2}}\right)$
Proof 1.2 It is apparent that $\frac{\partial V}{\partial \theta}=\frac{\partial}{\partial \theta}\left(\frac{\partial \ln (f)}{\partial \theta}\right)=\frac{\partial^{2} \ln (f)}{\partial \theta^{2}}=\frac{\partial}{\partial \theta} \frac{f^{\prime}}{f}=\frac{f^{\prime \prime} f-\left(f^{\prime}\right)^{2}}{f^{2}}=\frac{f^{\prime \prime}}{f}-V^{2}$. However, $\mathrm{E}\left(\frac{f^{\prime \prime}}{f}\right)=\frac{\partial^{2}}{\partial \theta^{2}} \int_{\mathfrak{X}} f(\mathbf{x}, \theta) d x=0$ under regularity conditions. Therefore $\mathrm{E}\left(\frac{\partial V}{\partial \theta}\right)=-\mathrm{E}\left(V^{2}\right)=-I(\theta)$.
Lemma 1.2 For X_{i} iid $f_{X}(x, \theta), I_{X_{1} \cdot X_{2} \cdots X_{n}}(\theta)=n I_{X_{i}}(\theta)$.
Example 1.1 Let $X_{i} \stackrel{i i d}{\sim} N\left(\mu_{0}, \sigma^{2}\right)$ so that $\theta=\sigma^{2}$. Then

$$
\begin{equation*}
f_{X}(x, \theta)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{1}{2 \sigma^{2}}\left(x-\mu_{0}\right)^{2}\right) \tag{18}
\end{equation*}
$$

so that

$$
\begin{equation*}
\ln (f)=-\frac{1}{2} \ln (2 \pi)-\frac{1}{2} \ln (\theta)-\frac{1}{2 \theta}\left(x-\mu_{0}\right)^{2} \tag{19}
\end{equation*}
$$

Thus

$$
\begin{align*}
\frac{\partial \ln (f)}{\partial \theta} & =-\frac{1}{2 \theta}+\frac{\left(x-\mu_{0}\right)^{2}}{2 \theta^{2}} \tag{20}\\
& =\frac{1}{2 \theta^{2}}\left(-\theta+\left(x-\mu_{0}\right)^{2}\right) \tag{21}
\end{align*}
$$

Taking the expectation gives

$$
\begin{align*}
\mathrm{E}\left(\left(\frac{\partial \ln (f)}{\partial \theta}\right)^{2}\right) & =\mathrm{E}\left[\frac{1}{4 \theta^{4}}\left(\theta^{2}-2 \theta\left(x-\mu_{0}\right)^{2}+\left(x-\mu_{0}\right)^{4}\right)\right] \tag{22}\\
& =\frac{1}{4 \theta^{4}}\left[\theta^{2}-2 \theta^{2}+\mathrm{E}\left(\left(x-\mu_{0}\right)^{4}\right)\right] \tag{23}\\
& =\frac{1}{4 \theta^{2}}\left[-1+\mathrm{E}\left(\left(\frac{x-\mu_{0}}{\sqrt{\theta}}\right)^{4}\right)\right] \tag{24}
\end{align*}
$$

Noting that $Y=\frac{x-\mu_{0}}{\sqrt{\theta}} \sim N(0,1)$ we can use its mgf to find the expected value. That is, since $M_{Y}(s)=e^{s^{2}} / 2$ then $\left.M^{(4)}(s)\right|_{s=0}=3$. Thus

$$
\begin{align*}
\mathrm{E}\left(\left(\frac{\partial \ln (f)}{\partial \theta}\right)^{2}\right) & =\frac{1}{4 \theta^{2}}[-1+3] \tag{25}\\
& =\frac{1}{2 \theta^{2}} \tag{26}\\
& =\frac{1}{2 \sigma^{4}} \tag{27}\\
& =I_{X_{i}}(\theta) \tag{28}
\end{align*}
$$

Using this information provides

$$
\begin{align*}
C R L B & =\frac{1}{I_{n}(\theta)} \tag{29}\\
& =\frac{1}{n /\left(2 \sigma^{4}\right)} \tag{30}\\
& =\frac{2 \sigma^{4}}{n} \tag{31}
\end{align*}
$$

Now, $\mathrm{E}\left[\left(X-\mu_{0}\right)^{2}\right]=\sigma^{2}$ and $\mathrm{E}\left[\left(\left(X-\mu_{0}\right)^{2}\right)^{2}\right]=3 \sigma^{4}$ by mgf. So, $\operatorname{Var}\left(\left(X-\mu_{0}\right)^{2}\right)=3 \sigma^{4}-\left(\sigma^{2}\right)^{2}=2 \sigma^{4}$. Hence,

$$
\begin{align*}
\operatorname{Var}\left(\frac{\sum\left(X_{i}-\mu_{0}\right)^{2}}{n}\right) & =\frac{2 \sigma^{4}}{n} \tag{32}\\
& =\frac{1}{I_{n}(\theta)} \tag{33}\\
& =C R L B \tag{34}
\end{align*}
$$

From this we deduce that $T(\mathbf{X})=\frac{\sum\left(X_{i}-\mu_{0}\right)^{2}}{n}$ is efficient. As an aside, note that

$$
\begin{align*}
\mathrm{E}(T) & =\frac{\sum \mathrm{E}\left[\left(X_{i}-\mathrm{E}\left(X_{i}\right)\right)^{2}\right]}{n} \tag{35}\\
& =\frac{n}{n} \sigma^{2} \tag{36}\\
& =\sigma^{2} \tag{37}
\end{align*}
$$

which implies that T is unbiased for $\theta=\sigma^{2}$ when μ_{0} is known.
When is the CRLB attained?
Theorem 1.2 Let $\mathbf{X} \sim f(\mathbf{x}, \theta)$ and $T(\mathbf{X})$ be an estimator of θ. Then $T(\mathbf{X})$ attains the CRLB iff $f(\mathbf{x}, \theta)=$ $h(\mathbf{x}) c(\theta) e^{T(\mathbf{x}) \omega(\theta)}$.

One more piece of good news.
Theorem 1.3 Under regularity conditions, the mle is asymptotically normal and attains the CRLB.

