
Cramér-Rao Lower Bound

Theorem 1.1 Let Xi be independent and identically distributed such that X ∼ fX(x, θ) and let T (X) be an
estimator for θ. Then (under certain regularity conditions)

Var (T (X)) ≥ [1 + b′T (θ)]
2

I(θ)

where

I(θ) = E

[(
∂ ln (fX(x, θ))

∂θ

)2
]

= −E
[
∂2 ln (fX(x, θ))

∂θ2

]
For any estimator of θ within the family of bias, bT (θ), we now have a lower bound for the variance. A
couple of special cases exist:

• For unbiased estimators we have bT (θ) = 0 ⇒ b′T (θ) = 0 ⇒ Var(T ) ≥ 1
I(θ)

• For T (X) = c a constant, bT (θ) = c− θ ⇒ b′T (θ) = −1 ⇒ Var(T ) ≥ 0

Proof 1.1 (Unidimensional) Let V = ∂ ln(f(x,θ))
∂θ (assumed to exist by regularity). Then

E(V ) =

∫
X

1

f(x, θ)

∂f(x, θ)

∂θ
f(x, θ)dx chain rule (1)

=
∂

∂θ

∫
X

f(x, θ)dx assumes interchangeability (2)

= 0 since derivative of constant (3)

Thus,

Cov(V, T ) = E(V T )− E(V )E(T ) (4)

= E(V T )− 0 since E(V ) = 0 (5)

= E

[
T
∂ (ln(f))

∂θ

]
(6)

=

∫
X

t(x)
1

f(x, θ)

∂f(x, θ)

∂θ
f(x, θ)dx (7)

=
∂

∂θ

∫
X

t(x)f(x, θ)dx by assumed interchangeability (8)

=
∂

∂θ
E(T ) (9)

=
∂

∂θ
[θ + bT (θ)] since bT (θ) = E(T )− θ (10)

= 1 + b′T (θ) (11)

We also have that

Var(V ) = E
[
(V − E(V ))

2
]

(12)

= E
(
V 2
)

(13)

= E

[(
∂ ln(f)

∂θ

)2
]

(14)
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Now, by the above

ρ2 =
(Cov(V, T ))

2

Var(V )Var(T )
(15)

≤ 1 (16)

This implies that

Var(T ) ≥ [1 + b′T (θ)]
2

E

[(
∂ ln(f)
∂θ

)2] (17)

Lemma 1.1 I(θ) = E
(
V 2
)
= −E

(
∂V
∂θ

)
= −E

(
∂2 ln(f)
∂θ2

)
Proof 1.2 It is apparent that ∂V

∂θ = ∂
∂θ

(
∂ ln(f)
∂θ

)
= ∂2 ln(f)

∂θ2 = ∂
∂θ

f ′

f = f ′′f−(f ′)2

f2 = f ′′

f − V 2. However,

E
(
f ′′

f

)
= ∂2

∂θ2

∫
X
f(x, θ)dx = 0 under regularity conditions. Therefore E

(
∂V
∂θ

)
= −E(V 2) = −I(θ).

Lemma 1.2 For Xi iid fX(x, θ), IX1·X2···Xn(θ) = nIXi(θ).

Example 1.1 Let Xi
iid∼ N

(
µ0, σ

2
)

so that θ = σ2. Then

fX(x, θ) =
1√
2πσ2

exp

(
− 1

2σ2
(x− µ0)

2

)
(18)

so that

ln(f) = −1

2
ln(2π)− 1

2
ln(θ)− 1

2θ
(x− µ0)

2 (19)

Thus

∂ ln(f)

∂θ
= − 1

2θ
+

(x− µ0)
2

2θ2
(20)

=
1

2θ2
(
−θ + (x− µ0)

2
)

(21)

Taking the expectation gives

E

((
∂ ln(f)

∂θ

)2
)

= E

[
1

4θ4
(
θ2 − 2θ(x− µ0)

2 + (x− µ0)
4
)]

(22)

=
1

4θ4
[
θ2 − 2θ2 + E

(
(x− µ0)

4
)]

(23)

=
1

4θ2

[
−1 + E

((
x− µ0√

θ

)4
)]

(24)

Noting that Y = x−µ0√
θ
∼ N(0, 1) we can use its mgf to find the expected value. That is, since MY (s) = es

2

/2

then M (4)(s)|s=0 = 3. Thus

E

((
∂ ln(f)

∂θ

)2
)

=
1

4θ2
[−1 + 3] (25)

=
1

2θ2
(26)

=
1

2σ4
(27)

= IXi
(θ) (28)
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Using this information provides

CRLB =
1

In(θ)
(29)

=
1

n/(2σ4)
(30)

=
2σ4

n
(31)

Now, E
[
(X − µ0)

2
]
= σ2 and E

[(
(X − µ0)

2
)2]

= 3σ4 by mgf. So, Var
(
(X − µ0)

2
)
= 3σ4−(σ2)2 = 2σ4.

Hence,

Var

(∑
(Xi − µ0)

2

n

)
=

2σ4

n
(32)

=
1

In(θ)
(33)

= CRLB (34)

From this we deduce that T (X) =
∑

(Xi−µ0)
2

n is efficient. As an aside, note that

E(T ) =

∑
E
[
(Xi − E(Xi))

2
]

n
(35)

=
n

n
σ2 (36)

= σ2 (37)

which implies that T is unbiased for θ = σ2 when µ0 is known.

When is the CRLB attained?

Theorem 1.2 Let X ∼ f(x, θ) and T (X) be an estimator of θ. Then T (X) attains the CRLB iff f(x, θ) =
h(x)c(θ)eT (x)ω(θ).

One more piece of good news.

Theorem 1.3 Under regularity conditions, the mle is asymptotically normal and attains the CRLB.
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